
Two Stage Similarity-aware Indexing for Large-scale Real-time
Entity Resolution

Shouheng Li1 Huizhi Liang2 Banda Ramadan3

Research School of Computer Science, College of Engineering Computer Science
Australian National University,

Canberra ACT 0200,
1Email: sohey33@gmail.com

2Email: huizhi.liang@anu.edu.au

3Email: banda.ramadan@anu.edu.au

Abstract

Entity resolution is the process of identifying records
in one or multiple data sources that represent the
same real-world entity. How to find all the records
that belong to the same entity as the query record
in real-time brings challenges to existing entity res-
olution approaches. The challenge is especially true
for large-scale dataset. In this paper, we propose to
use a two-stage similarity-aware indexing approach
for large-scale real-time entity resolution. In the first
stage, we use locality sensitive hashing to filter out
records with low similarities for the purpose of de-
creasing the number of comparisons. Then, in the
second stage, we pre-calculate the comparison simi-
larities of the attribute values to further decrease the
query time. The experiments conducted on a large-
scale dataset with over 2 million records shows the
effectiveness of the proposed approach.

Keywords: Entity Resolution, Real-time, Block-
ing, Locality Sensitive Hashing, Scalability, Dynamic
Data.

1 Introduction

With the utilisation of databases and information sys-
tems, businesses, governments and organisations are
able to collect massive information without much dif-
ficulty. However, the raw data might be dirty, con-
taining data that are incomplete, inconsistent and
noisy. So the raw data is often required to be pre-
processed or cleaned before further use. One of the
important steps in data pre-processing is called entity
resolution, or data integration, which is the process
that identifies and matches data records that refer to
the same real world entity.

Entity resolution can help to reduce the noise in
data and improve data quality (Elmagarmid et al.
2007). Currently, most available entity resolution
techniques conduct the resolution process in offline
or batch mode, while the dataset is usually static
(Christen 2012). However, in real world scenarios,
many applications require rapid real-time responses.
For example, online entity resolution based on per-
sonal identity information can help a bank to identify

Copyright c©2013, Australian Computer Society, Inc. This pa-
per appeared at the Eleventh Australasian Data Mining Con-
ference (AusDM 2013), Canberra, 13-15 November 2013. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 146, Peter Christen, Paul Kennedy, Lin Liu,
Kok-Leong Ong, Andrew Stranieri and Yanchang Zhao, Ed.
Reproduction for academic, not-for-profit purposes permitted
provided this text is included.

fraudulent credit card applications (Christen 2012).
The requirement of dealing with large-scale dynamic
data and providing rapid responses brings challenges
to current entity resolution techniques.

Typically, pair-wise comparison is used to find the
records that belong to the same entity. However, the
number of comparisons increases dramatically when
the size of the dataset grows quickly. Blocking or
canopy formation can help to significantly decrease
the number of comparisons (Christen 2012). Block-
ing divides the data into blocks and only compares the
query record with all other records within the same
block. For example, Soundex and Double-Metaphone
are commonly used blocking approaches (Christen
2012). Moreover, another technique called Locality
Sensitive Hashing (LSH) can find approximate sim-
ilarity records quickly via hashing. It provides a
similarity based filtering that “hashes” similar data
records together.

Recently, Christen et al. (2009) proposed an
Similarity-aware Indexing technique that improves
the performance of traditional indexing by pre-
calculating similarities of attribute values. Never-
theless, this approach needs to compare every record
that has one or more encoding values that are the
same with the query record, even though the com-
pared record has a low overall similarity with the
query record. If we can filter out those low similar-
ity records first, then we can reduce the number of
comparisons to speed up the query time. In this pa-
per, we propose a two-stage similarity-aware indexing
approach. At the first stage, locality sensitive hash-
ing is adopted to approximately filter out those data
records that have low similarity with the query record
and allocate the potential matches in the same block.
At the second stage, similarity-aware indexing is used
to compare potential matches to obtain a precise and
accurate result.

The rest of the paper is organized as below.
Firstly, the related work will be briefly reviewed in
Section 2. Then, the proposed approaches will be
discussed in Section 3. In this section, the two-stage
similarity-aware indexing approach is presented. In
Sections 4 and 5, the design of the experiments, ex-
perimental results, and discussions will be presented.
Finally, the conclusions of this work will be given in
Section 6.

2 Related Work

The purpose of entity resolution is to find records in
one or several databases that belong to the same real-
world entity. Such an entity can be a person (e.g. cus-

tomer, patient or student), a product, a business, or
any other object that exists in the real world. Entity
resolution aims to link different databases together
(in which case it is known as Record Linkage or Data
Matching) and can also identify duplicate records in
one database (known as De-duplication) (Christen
2012). Entity resolution is widely used in various
applications such as identity crime detection, estima-
tion of census population statistics, and retrospective
construction of samples of persons for health research
(Elmagarmid et al. 2007, Christen 2012). Currently,
most available entity resolution techniques conduct
the resolution process in offline or batch mode. Only
limited research into using entity resolution at query
time (Lange & Naumann 2012) or in real-time (Chris-
ten et al. 2009, Ramadan et al. 2013) has been con-
ducted.

Indexing techniques can help to scale-up the en-
tity resolution process. Commonly used indexing
approaches include standard blocking based on in-
verted indexing and phonetic encoding, q-gram in-
dexing, suffix array based indexing, sorted neighbor-
hood, multi-dimensional mapping, and canopy clus-
tering (Christen 2012). Typically, these existing ap-
proaches index one or more attribute values manually
selected based on expert domain knowledge. Some re-
cent research has proposed automatic blocking mech-
anisms (Das Sarma et al. 2012) or learning algorithms
to find the best blocking schemes for record linkage
(Michelson & Knoblock 2006).

Christen et al. (2009) proposed a similarity-aware
indexing approach for real-time entity resolution.
However, this approach fails to work well for large-
scale databases, as the number of similarity compar-
isons for new attribute values increases significantly
as the sizes of blocks increases with the growing num-
ber of records. Recently, Ramadan et al. (2013) ex-
tended this approach to facilitate a dynamic approach
to index whereby the index is extended as a database
grows. They showed that the insertion of new records
into the index, as well as querying the index for real-
time entity resolution grows sub-linearly as the size
of the database index grows. However, this approach
still requires a large number of pair-wise comparisons
as it compares every record that has one or more en-
coding values that are the same with the query record,
while the comparisons of records has a low overall
similarity with the query record are not necessary.

Locality Sensitive Hashing (LSH) can help to re-
turn approximate similar records of a query quickly.
Such approaches are widely used in Nearest Neighbor
and Similarity Search in applications such as image
search (Dong et al. 2008), recommender systems (Li
et al. 2011), and entity resolution (Kim & Lee 2010).
More recently, the work of Gan et al. (2012) proposed
to use a hash function base with n basic length-1 sig-
natures rather than using fixed l length-k signatures
or a forest to represent each record. The records that
are frequently colliding with a query record across all
the signatures are selected as the approximate simi-
larity search results. However, this approach needs to
scan all the data records in the blocks to get the fre-
quently colliding records each time, which results in
the difficulty of returning results quickly when the
sizes of the blocks are big for large-scale datasets.
This approach can be used in real-time scenario, if we
use the dynamic collision counting method for length-
k (k > 1) blocks.

Although both LSH and indexing approaches (e.g.,
Similarity-aware Indexing(Christen et al. 2009, Ra-
madan et al. 2013)) can be effectively used in real-
time entity resolution, how to combine them together
to facilitate large-scale real-time entity resolution still

Record ID Entity ID First name Last name Suburb Zipcode

r1 e1 halle bryant turner 2612
r2 e2 kristine jones city 2601
r3 e3 hailey pitt turner 2612
r4 e4 christy greg belconnen 2617
r5 e2 christine jones city 2601

Table 1: Example records, r5 is the query record

Record ID h1 h2 h3 h4

r1 1 2 3 4
r2 5 6 7 8
r3 9 10 3 11
r4 12 13 14 15
r5 5 16 7 8

Table 2: Length-1 minHash signatures, generated us-
ing four minHash functions h1, h2, h3 and h4

needs to be explored.

3 A Two-stage Similarity-aware Indexing
Approach

We propose a two-stage similarity-aware indexing
approach called LSI. LSI includes three indexes: a
locality sensitive hashing index named LI, a similar-
ity index named SI, and a standard blocking index
named BI. At the first stage, we use the locality
sensitive hashing index LI to filter out records with
low similarities with the query records. Records with
high similarities are preserved and stored in same
blocks in the LI. Then at the second stage, records in
the same block in the LI are considered as candidate
matches and are compared pair-wisely. Candidate
matches’ attribute values are grouped together using
encoding techniques and stored in the blocking
index BI. A attribute value is compared with other
attribute values which have the same encoding value,
their similarities are pre-calculated and stored in the
similarity index SI. The proposed approach performs
well in real-time entity resolution scenarios for two
reasons: firstly, comparisons on record pairs with
low-similarities are avoided; secondly, most similar-
ities are pre-calculated and can be retrieved from
the SI therefore time of comparisons are saved. The
proposed indexing approach LSI will be discussed in
details in Section 3.1 and 3.2. Then in Section 3.3,
we will discuss how the proposed indexing approach
LSI can be applied in real-time entity resolution.

[Example 1] Table 1 shows an example of five
records r1, r2 , r3, r4, and r5 with four attributes:
First Name, Last Name, Suburb, and Zipcode. They
belong to four different entities e1, e2, e3 and e4.
Suppose r5 is a query record, the entity resolution
process for r5 is to find r2 based on the four attribute
values.

3.1 First stage: Locality Sensitive Hashing

A locality sensitive hashing family can help to find
approximate results. Let h denote a hash function
for a given distance measure approach D, Pr(x) de-
note the probability of an event i, p1 and p2 are two
probability values, p1 > p2, 0 ≤ p1, p2 ≤ 1. h is called
(d1, d2, p1, p2)-sensitive for D, if for any two records
rx and ry, the following conditions hold:

1. if D(rx, ry) ≤ d1 then Pr(h(rx) = h(ry)) ≥ p1

Figure 1: An example LSI index for the example records in Table 1

Record ID First name Encoding

r1 halle hl
r2 kristine krst
r3 hailey hl
r4 christy krst
r5 christine krst

Table 3: Double-Metaphone Encoding of the First
name attribute values in Table 1

2. if D(rx, ry) > d2 then Pr(h(rx) = h(ry)) ≤ p2

Minwise hashing (minHash) is a popularly used lo-
cality sensitive hashing approach that estimates the
Jaccard similarity. Let J(rx, ry) denote the Jaccard
similarity for any two records rx and ry. The min-
Hash method applies a random permutation π on the
attribute values (i.e., elements) of any two records
(i.e., sets) rx and ry and utilizes

p = Pr(min(π(rx)) = min(π(ry)))

= J(rx, ry) =
rx ∩ ry
rx ∪ ry

(1)

to estimate the Jaccard similarity (Gionis et al. 1999)
of rx and ry (Gionis et al. 1999), where min(π(rx))
denotes the minimum value of the random permu-
tation of the attribute values of record rx. p de-
notes the hash collision probability Pr(min(π(rx)) =
min(π(ry))). It represents the ratio of the size of the
intersection of the attribute values of the two records
to that of the union of the attribute values of the two
records. To avoid unnecessary comparisons with low
similarity records and secure the response time for
query records in real-time, we use locality sensitive
hashing to filter out those low similarity records at
the first stage.

Each record is assigned with a set of minHash
signatures via a family of minHash functions. For
example, Table 2 shows the minHash signatures of
the example records in Table 1. In the example of
Table 2, four hash functions h1, h2, h3, h4 are used.
They generate length-1 signatures for each record.

However, having common length-1 minHash values
does not necessarily mean two records are similar. In
situations where some attribute values are frequent,
dissimilar records usually have common length-1
minHash values too, which means most records will
be assigned with same length-1 minHash values and
minHashing does not really narrow down the range
of candidate records.

[Example 2] (Length-1 minHash signatures).
Table 2 shows the length-1 minHash values of the
example records given in Table 1. Records that have
common attribute values are likely to have same
length-1 minHash values, e.g., r1 and r3 have the
same minHash value 3. However, although r1 and
r3 have same length-1 minHash signatures, they
actually belong to different entities.

Therefore, in order to filter out the noisy matches,
a technique called banding is introduced to enable a
rigid filtering. Banding tunes the strictness of min-
Hash filtering by combining multiple minHash func-
tions to form a band. The minHash values gener-
ated by minHash functions in a band are combined
to form a minHash signature. Banding enhances
the filtering strictness by applying a logic “AND”
on minHash values. The number of minHash values
in a band is known as bits denoted as k. Together
with the And-construction, Or-constructions are con-
ducted to increase the collision probability. More Or-
constructions will introduce more hash tables denoted
as l.

At the first stage, for each record, k hash functions
are used to generates a length-k signature through
And-construction. To increase the collision proba-
bility, each record is hashed l times to conduct Or-
construction and form l hash tables (i.e., l length-k
signatures), n = k × l. Each record is indexed by l
length-k minHash signatures.

After we get the minHash signature, we store the
records’ identifiers and their minHash signatures into
an index named Locality Sensitive Hashing Index
(i.e., LI). For a query record, the records with the
same minHash signatures, also known as candidate
records, can be quickly found by looking up the LI
index.

[Example 3] (LI: Locality Sensitive Hash-
ing Index). Left figure in Figure 1 shows the
locality sensitive hashing index of the example
records in Table 1 using the parameters k = 2 and
l = 2. r2 and r5 are put in the same block in the LI
with minHash signature 7 8.

After we get the candidate records in each locality
sensitive hashing block, we need to compare the simi-
larity of each candidate record with the query record.
The pre-calculation of the similarity of two attribute
values can help to avoid large number of comparisons
in real-time. This will be discussed in Section 3.2.

3.2 Second stage: Similarity-aware indexing

At the second stage, we adopt the idea of Similarity-
aware Inverted Indexing (Christen et al. 2009, Ra-
madan et al. 2013) to conduct pair-wise comparisons.

As mentioned in Section 3.1, an input query’s can-
didate matches can be obtained by looking up the
query’s minHash signatures in the LI. After that, the
query record needs to be compared with each of the
candidate records in order to get a precise list of true
matches. The pair-wise comparisons are done by com-
paring the two records’ attribute values accordingly
with approximate string comparison approaches such
as the Winkler function (Ramadan et al. 2013). For
large datasets, there are often thousands of candi-
date records to compare, thus the pair-wise compar-
isons are computationally expensive if they have to
be done in real-time. However, in real-world situ-
ations, attribute values may appear frequently, such
as the names and zipcodes of populous suburbs, some
popular personal names, etc. For this reason, in the
Similarity-aware Inverted Indexing, the similarities of
attribute values are pre-calculated, so that the simi-
larities between attribute values can be retrieved from
the Similarity Index (SI) rather than calculated online
and thus the comparison time can be saved.

The Similarity-aware Inverted Indexing works in
the following manner. A record is firstly processed
using encoding techniques, each attribute of the
record generates a encoding blocking key value.
Attribute values are then stored in an index call
Blocking Index (BI) under the corresponding encod-
ing blocking key values. The BI is introduced for
the purpose of reducing the number of comparisons
between attribute values as an attribute value is only
compared with other attribute values that have the
same encoding blocking key value (same block in
BI).

[Example 4] (BI: Blocking Index). The at-
tribute “First name” in Figure 1 is used to illustrate
the process. Attribute values that have the same
Double-Metaphone encoding are put in the same
block in the BI (shown in Figure 1). So halle and
hailey are put in the block of key sm0 ; christine,
kristine and christy are put in the block of key krst.

The comparisons are conducted via calculating
each pair’s similarity using comparison functions.
The calculated similarities are then stored in an
index call Similarity Index (SI) for future retrieval
purpose.

[Example 5] (SI: Similarity Index). Each
attribute values in the BI is compared with others
in the same block using the Winkler comparison
function. So halle is compared with hailey, zach is
compared with zack, christine, kristine and christy

are compared with each other. The calculated
similarities are then stored in the SI. For instance,
the similarities among of kristine and christine and
christy are stored as shown in Figure 1.

3.3 Real-time Entity Resolution

The LSI includes three indexes: LSH Index (LI),
Block Index (BI) and Similarity Index (SI). This sec-
tion describes how the proposed approach is applied
to real-time entity resolution. Similar to other index-
ing techniques (Christen 2012), the proposed indexing
approach has two phases: building phase and query-
ing phase.

3.3.1 Building phase

In the building phase, every record is treated as a
new record and is used to build the indexes. In the
beginning, all the three indexes are initialised to be
empty. While a record is processed, it is firstly in-
serted into the LI according to the record’s minHash
signatures. Each minHash signature corresponds to a
unique “bucket” in the LI, empty “buckets” are ini-
tialised for new minHash signatures. The record’s
identifier is then inserted into every bucket that the
minHash signatures correspond to. Afterwards, the
record is used to build the BI. Encoding blocking
key values are generated based on attribute values of
the record. Similar to the LI, each encoding blocking
key value corresponds to a “block” in the BI. Since
phonetic encoding is used, attribute values in a same
“block” are similar in pronunciations. The attribute
values of the inserted record are then added into the
“blocks” which the encoding blocking key values cor-
respond to in the BI. Finally, each attribute value of
the inserted record is compared with other attribute
values in the same ”block” in the BI. The calculated
similarities are then stored in the third index, SI. The
building process is briefly described in Algorithm 1.
A record r’s identifier r.0 is firstly inserted into the
LI. Then the insertion subroutine is called to insert
r into the BI and SI.

In the building phase, every record is treated as
a new record and is used to build the indexes. In
the beginning, all the three indexes are initialized
to be empty. While a record is processed, it is in-
serted into the locality Sensitive Hashing Index (i.e.,
LI) based on the record’s minHash signatures at the
first stage. Each minHash signature corresponds to
a unique block in the LI, empty blocks are initialised
for new minHash signatures. The record’s identifier
is then inserted into every bucket that this record’s
minHash signatures correspond to.

Then, at the second stage, for each attribute value
of a record in every Locality Sensitive Hashing block,
we build the standard encoding block (i.e., BI) based
on their encoding blocking key value. Afterwards, the
record is used to build the BI. encoding blocking key
values are generated based on attribute values of the
record. Similar to the LI, each encoding blocking key
value corresponds to a block in the BI. If phonetic en-
coding is used, then the attribute values in the same
block are similar in pronunciations. The attribute
values of the inserted record are then added into the
blocks which the encoding blocking key values corre-
spond to in the BI. After we build the BI, each at-
tribute value of the inserted record is compared with
other attribute values in the same block in the BI. The
calculated similarities are then stored in the Similar-
ity Index SI. The building process is briefly described
in Algorithm 1. A record r’s identifier r.0 is firstly

Algorithm 1: Building phase
input : Input dataset D; number of attributes n; minHash

function H; encoding functions E; similarity
functions S; r is a record in D, r.0 is the record
identifier, r.i is r’s attribute value, i = 1, ..., N

output: Indexes SI, BI and LI

1 Initialise SI = {}
2 Initialise BI = {}
3 Initialise LI = {}
4 for r ∈ D do

// First stage, insert record ID into the LI.
5 Sig = H(r)
6 for sig ∈ Sig do
7 if sig 6∈ LI then
8 Initialise bk = []
9 Append r.0 to bk

10 LI[sig] = bk

11 else
12 Append r.0 to LI[sig]

// Second stage, insert attribute values into the BI
and SI.

13 Insert(r, n, E, S, SI, BI, LI)

Algorithm 2: Insertion
input : Record r number of attributes n; encoding

functions E; similarity functions S; indexes SI, BI
and LI.

output: Updated indexes SI, BI and LI

// Second stage, insert attribute values into the BI and
SI.

1 for i = 1...n do
2 if r.i 6∈ SI then
3 c = Ei(r.i)
4 b = BI[c]
5 Append r.i to b
6 BI[c] = b
7 Initialise si = []
8 for v ∈ b do
9 s = Si(r.i, v)

10 Append (v, s) to si
11 oi = SI[v]
12 Append (r.i, s) to oi
13 SI[v] = oi

14 SI[r.i] = si

inserted into the LI. Then the insertion subroutine is
called to insert r into the BI and SI.

The most important part of the building phase is
the insertion subroutine, it is shown in Algorithm 2.

The insertion subroutine takes a record r, at-
tribute values of r are checked to see if they have
been indexed. If an attribute value r.i has not been
indexed previously, e.g. not in the SI, the attribute
value will be inserted into both SI and BI. For in-
stance, if r.i is not previously indexed, the inserting
process will firstly compute its encoding value c, and
add r.i into BI using c as encoding blocking key value.
The block list b which contains other attribute values
with the same encoding blocking key value c will then
be retrieved. The similarities (denoted as s) between
r.i and other attribute values v in b will be calculated
using the comparison function S. In the SI, each at-
tribute value has a list that stores its similarity with
other attribute values. So a new similarity list si will
be initialised and similarities will be stored in it in the
form of tuples (v, s) where v is other attribute value
and s is the similarities between r.i and v. Next, for
each of the attribute values v in b, its similarity list
oi will be retrieved and the similarity will be added
to it in the form of tuple (r.i, s). Finally, the updated
indexes SI, BI and LI are returned.

Algorithm 3: Querying phase
input : Dataset D query record q number of attributes n;

minHash function H; encoding functions Ei and
similarity functions Si for i = 1...n; indexes SI, BI
and LI.

output: Ranked match list M

1 Initialise M = []
// First stage

2 Sig = H(q)
3 for sig ∈ Sig do
4 if sig 6∈ LI then
5 Initialise bk = []
6 Append q.0 to bk
7 LI[sig] = bk

8 else
9 bk = LI[sig]

// Second stage, pair-wise comparisons
10 for r.0 ∈ bk do
11 if r.0 6∈ M then
12 Retrieve r from D using r.0
13 Initialise s = 0
14 for i = 1...n do
15 if q.i 6∈ SI then
16 Insert(q, n, E, S, SI, BI, LI)

17 sl = SI[q.i]
18 s = s + sl[r.i]

19 Append (r.0, s) to M

20 Append q.0 to bk
21 LI[sig] = bk

22 Sort M according to similarity

3.3.2 Querying Phase

At querying phase, the main aim is to return the
most similar records that match with a query. As
mentioned before, in many scenarios, queries are re-
quired to be processed in real-time. In the LSI, real-
time querying is implemented using the three indexes
built in the building phase. Also, similar to the ex-
tended similarity-aware inverted indexing proposed
by Ramadan et al. (2013), querying in the LSI is per-
formed in a dynamic manner, which means every sin-
gle query is regarded as a new record and is used to
enrich the three indexes. The main idea of the LSI
querying is to use minHash to filter out low similarity
records. Thus, rather than using all the records, only
the records that share the same minHash signatures
with the query are considered as candidate matches
for pair-wise comparisons. Because the minHash fil-
tered out most non-matches, an enormous number of
unnecessary comparisons are avoided. For the neces-
sary comparisons, since previously appeared attribute
values are all indexed and their pair-wise similarities
are stored in the SI, we can get their similarity val-
ues directly rather than on-line calculation (Christen
et al. 2009). Because retrieving similarities from the
SI is computationally cheaper than on-line compar-
isons, the querying is much faster.

The querying phase is briefly described in Al-
gorithm 3 where a query record is denoted by q.
q is firstly processed using minHash to obtain its
minHash signatures (denoted as Sig). If a minHash
signature corresponds to a empty block in the LI,
the query record’s identifier q.0 will be added to
the empty block. If the block is not empty, records
that have been hashed into the same block will be
retrieved from the LI and considered as candidate
matches. Next, the query q will be compared to
every single candidate record. The comparison is
done through comparing each attribute value of
q and the candidate record r accordingly. Since
the similarities are pre-calculated and stored in the
SI, they can be retrieved directly. However, there

are cases that the attribute values of q are not
previously indexed and cannot be found in the SI.
For such cases, q is treated as a whole new record
and the insertion function used in the building phase
is called to insert it into indexes. As the querying is
performed in a dynamic environment where queries
are also considered as new records, q’s identifier is
inserted into the LI for future querying.

[Example 6] Suppose r5 in Table 1 is a query
record, and the querying is performed based on the
three indexes shown in Figure 1. In the work of
Christen et al. (2009) and Ramadan et al. (2013),
r5 is compared with both r2 and r4 because they
share the same Double-Metaphone encoding “hrst”.
In the LSI, r5 is no longer compared with the noisy
record r4 because they are in different blocks in the
LI (Figure 1). Thus, the number of comparisons can
be decreased.

The overall similarity between two records is the
sum of the similarities of all the attribute values of
two records. The candidate result records are ranked
based on their overall similarity values. We can set a
similarity threshold to return those candidate results
that have similarities higher than the threshold as
the query results. Alternatively, we can select top N
highly ranked records as query results.

4 Experiment

4.1 Dataset

To evaluate the approach, we conducted experi-
ments on North Carolina Voter Registration Dataset.
This dataset is a large real-world voter registra-
tion database from North Carolina (NC) in the
USA (North Carolina State Board of Elections: NC
voter registration database Last accessed 11 Decem-
ber 2012). We downloaded this database every two
months since October 2011 until December 2012.
This data set contains the names, addresses, and
ages of more than 2.4 million voters. The attributes
used in our experiments are: first name, last name,
city, and zip code. The entity identification is the
unique voter registration number. This data set con-
tains 2,567,642 records. There are 263,974 individuals
(identified by their voter registration numbers) with
two records, 15,093 with three records, and 662 with
four records. Examination of the record sets for indi-
viduals with multiple records shows that many of the
changes in the first name attribute contain nicknames
and small typographical mistakes. The changes in
last name and address attributes are mostly real
changes that occur when people get married or move
address.

4.2 Evaluation Approaches

To evaluate the effectiveness of the proposed approx-
imate blocking approach, we employ the commonly
used Recall, Memory Cost and Query Time to mea-
sure the effectiveness and efficiency of the whole real-
time top-N entity resolution approach. We divided
each dataset into training (i.e., building) and test (i.e.,
query) set. Each test dataset contains 50% of the
whole dataset. For each test query record, the entity
resolution approach will generate a list of ordered re-
sult records. The top N records (with the highest
rank scores) will be selected as the query results. If
a record in the results list has the same entity iden-
tification as the test query record, then this record

is counted as a hit (i.e., an estimated true match).
The recall value is calculated as the ratio of the total
number of candidate recrods of all the test queries to
the total number of true matches in the test query
set. We compared the performance produced by the
following approaches:

• LSI . This is the proposed two-stage similarity-
aware indexing approach. It contains two stages,
at the first stage, we use locality sensitive hash-
ing to filter out records with low similarities for
the purpose of decreasing the number of com-
parisons. Then, at the second stage, we pre-
calculating the comparison similarities of the at-
tribute values to further decrease the query time.

• LSH . This is the Locality Sensitive Hashing ap-
proach. It generates l length-k signatures for
each data record. MinHash is used to generate
the signatures of each record. This is an im-
proved locality sensitive hashing approach that
uses dynamic collision counting (Gan et al. 2012)
in real-time scenario. Work (Gan et al. 2012)
uses a base of length-1 basic hash functions to
represent each data record. The similar data
records are ranked based on the dynamic colli-
sion counting number with the query record. As
blocks with length-1 signatures usually have very
large blocks for large-scale datasets, LSH uses
length-k signatures (k > 1) rather than length-1
ones.

• SAI .This is the Similarity-Aware Indexing ap-
proach for real-time entity resolution discussed
in (Ramadan et al. 2013). It pre-calculated the
similarity of each record value pairs of the same
encoding block to decrease the number compar-
isons in real-time querying.

The above techniques are all built for dynamic index-
ing where queries are regarded as new records and are
inserted into indexes for future quering. All the tech-
niques are implemented using Python (version 2.7.3).
Experiments are ran on a server with 128 GBytes of
main memory and four 6-core 64-bit Intel Xeon CPUs
running at 2.4 GHz.

4.3 Parameter setting

For the encoding (blocking) functions, the Double-
Metaphone technique was used for the first three at-
tributes (first name, last name, and suburb), while the
last 4 digits were used for the zip code attribute. For
the string comparison functions, the Winkler function
was used for the first three attributes, while for the
zip code the similarity was calculated by counting the
number of matching digits divided by the length of
the zip code. In order to simulate an intensive query
environment, 50% data records of each dataset is used
for indexes building and the other 50% are used for
indexes querying.

The number of hash functions and number of bits
in each band are crucial parameters, they together
control the Jaccard similarity threshold of the min-
Hash filter by tuning the logic combination of “AND”
and “OR” (Gan et al. 2012). Dividing the number of
hash functions by the number of bits, we get the num-
ber of minHash signatures for a record, which is also
the number of buckets the record will be assigned to
in the LI. Normally, a big number of minHash signa-
tures leads to larger memory usage and more pair-
wise comparisons but better query accuracy, while
a small number of minHash signatures leads to less

 100

 1000

 10000

 100000

 1e+06

 1e+07

LSI SAI LSH

Q
u
e
ry

 t
im

e
 (

m
ic

ro
s
e
c
o
n
d
s
)

Figure 2: Summary of query time distribution, y axis
is the query time in logarithmic scale N = 100. (box-
plot with whiskers with maximum 1.5 IQR, outliers
are not plotted).

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

C
o
u
n
t
(L

o
g
)

No. of comparisons

LSI

SAI

Figure 3: Distribution of the number of comparisons,
N = 100, y axis is the count of queries in logarithmic
scale and x axis is the number of comparisons. (LSH
does not involve pair-wise comparisons, therefore it is
not included in this figure).

query time, less memory usage and less accuracy. Dif-
ferent parameters can be chosen based on different
scenarios. After extensive experiments, we set k = 4,
l = 15 for LSH and LSI.

5 Results and Discussions

The experimental results show that the LSI’s average
processing time for a single query is 13.67 millisec-
onds, which is almost 10 times faster that the SAI
(Figure 2). The improvement can be explained by
decrease in the number of pair-wise comparisons as
shown in Figure 3. Although the LSH is the fastest
in terms of query processing, its recall is relatively
low: less than 0.6 while N = 50. The LSI shows
a good recall of around 0.7 when a small number of
query results are returned. If a larger N is allowed,
the recall of the SAI increases and surpasses the LSI
at N = 27 (Figure 4). Consequently, the LSI requires
more time for building indexes and more memory for
storing indexes (Figure 5 and 6).

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 5 10 15 20 25 30 35 40 45 50

R
e
c
a
ll

N

LSI
LSH
SAI

Figure 4: Top N recall results (N = 1, ..., 50).

 0

 100

 200

 300

 400

 500

 600

 700

 800

b
u

ild
in

g
 t

im
e

 (
s
e

c
o

n
d

)

LSI

SAI

LSH

Figure 5: Building time

Discussions:

1) Query time

The distribution of query time is summarised in Fig-
ure 2 using boxplot with the range of maximum 1.5
IQR. IQR, shorted for interquartile range, equals to
the difference between the upper and lower quartiles,
i.e. IQR = Q3 −Q1.

We can see that the LSI approach performs better
than the SAI in this aspect. The median query time
for the LSI is 5.71 milliseconds, which is more than 10
times faster than the 83.03 milliseconds of the SAI.
Also, as expected, the query time of the LSI is longer
than that of the LSH. This is because the LSH only
gives a approximate result for queries and does not
involve pair-wise comparisons.

The distribution of number of comparisons can be
used to explain the improvement of the LSI in query
time. Processing time is much faster for queries that
requires little comparison times and much slower for
queries that need to be compared for many times. As
shown in Figure 3, a significant number of queries in
the two-stage approach are distributed in the lower
range of the number of comparisons. 90% of the total
queries are in the range of less than 1,000 compari-
son times. This is because dissimilar records are fil-
tered out based on Jaccard similarity using minHash
in the first stage, the number of candidate matches are
relatively small and thus less pair-wise comparisons
are needed. For many queries, pair-wise comparisons
are not even needed because no candidate matches
are found for them in the first stage (i.e., their min-
Hash signatures are not found in the LI). There are

 0

 2000

 4000

 6000

 8000

 10000

 12000

m
e

m
o

ry
 u

s
a

g
e

 (
M

B
)

LSI

SAI

LSH

Figure 6: Memory usage, N = 100.

also a small proportion of queries that requires mas-
sive numbers of comparisons. This is because these
queries’ minHash signatures direct to large blocks in
the LI, so a large number of candidate records are
found for them in the first stage. As a result, the dis-
tribution of the LSI’s query time shows a big range
as seen in Figure 2

Comparatively, for the SAI, the number of com-
parisons is distributed more evenly and the maxi-
mum number of comparisons reaches almost 100,000.
In the SAI, a query’s comparison number totally de-
pends on whether or not the Double-Metaphone en-
codings of the query’s attribute values is common in
the dataset. If the attribute values direct to large
blocks in the BI, the query will be compared with a
lot of candidate records, and vice versa. Although
blocks in the BI of the SAI are of a variety of sizes,
the number of Double-Metaphone encodings are lim-
ited, which makes most blocks in the BI huge. As a
result, because most queries in the SAI are compared
for much more time than those in the LSI, queries are
processed slower in the SAI.

2) Recall

The recall distribution is given in Figure 4. As it
shows, while the number of query results (i.e., N) is
less than 27, the LSI’s recall is higher than the SAI’s.
Starting from 0.66 while N = 1, the LSI’s recall in-
creases and slowly stabilised at 0.72. The SAI’s recall
grows steeply from 0.47 to 0.76 and surpasses the LSI
at N = 27. The recall of the LSH is relatively low:
less than 0.6 while N = 50.

In the LSH, the candidate data records are ranked
based on the collision counting number with the query
record. Because approximate comparison functions
such as Winkler are not used in this approach, it fails
to capture the spelling variations of attribute values
and results in missing this type of true match records.

In the SAI, records have the same Double-
Metaphone encodings with the query are all consid-
ered as candidate records and compared with the
query using the Winkler function. Because attribute
values with the same Double-Metaphone encoding of-
ten share common characters, they are likely to have
high Winkler similarities and cannot be differentiated
via similarity ranking. The top ranked records can
be false matches as they may have analogical similar-
ities. Therefore, when only a small N is allowed, false
matches are likely to be included, which leads to low
recalls. However, as N increases, more true matches
are included than false match and the recall increases
sublinearly.

The situation of the SAI does not happen to the
LSI because most false matches are already elimi-
nated by minHash based on their Jaccard similari-
ties at the first stage, which ensures query results
are of high quality while N is small. At the same
time, some true matches with relatively low Jaccard
similarities are also eliminated by minHash at the
first stage. Consequently, the recall of the LSI grows
slowly and soon settles at around 0.72 while the SAI’s
recall grows all the way to 0.76. So, while a small
number of query results is required, the LSI outper-
forms the SAI in terms of recall. But if a big number
of query results is acceptable, the SAI provides a bet-
ter matching recall.

3) Building time and memory usage

The building times of the tree approach are shown by
histograms in Figure 5. As expected, the LSI takes
much longer time for building indexes. 748 seconds
are used by the LSI to build indexes, which is 3 times
longer than the SAI and 5 times longer than LSH.
The main reason for the difference is the introduction
of the LI in the LSI. The experiment setting is 60
hash functions with 4 bits in a band, which means
each record is “hashed” into 15 buckets in the LI. As
a result, the LI becomes the largest indexes and thus
takes much longer time to build. Considering building
is done off-line, the increase in building time does
not have a big impact on real-time entity resolution
scenarios.

While the LSI processes queries faster, it consumes
more memory than other two techniques as shown in
Figure 6. The LSI used more than 12,598 MB mem-
ory which is 2,158 MB more than the SAI and 3,179
MB more than the LSH. Similar to building time.
the large LI plays an big part in the large memory
usage of the LSI too. Additionally, for the purpose of
avoiding signature collisions, minHash signatures are
often large integer numbers. Storing millions of large
integers in the LI also consumes a lot of memory.

6 Conclusion and Future Work

In this paper, a two-stage similarity-aware indexing
approach named LSI has been presented for large-
scale real-time entity resolution. LSI firstly filter
out records with low similarities using locality sensi-
tive hashing, and then pre-calculating the comparison
similarities of the attribute values to further decrease
the query time.

This approach is evaluated experimentally on a
large-scale datasets taken from a real-world database.
The experimental results demonstrated the effective-
ness of the proposed approach.

Like other similarity-aware indexing techniques,
the two-stage similarity-aware indexing approach re-
quires to store pre-calculated similarities in mem-
ory, which consumes a large proportion of memory
as query records are being added to the indexes con-
tinuously. Improving upon the memory consumption
by adopting other indexing techniques such as sorted
neighbourhood indexing is one of the future research
directions of this approach. Additionally, exploring
the possibility of applying this approach to other ap-
plication areas such as real-time recommender system
is another direction for future work.

References

Anand, R. & Ullman, J. D. (2011), Mining of massive
datasets, Cambridge University Press.

Bawa, M., Condie, T. & Ganesan, P. (2005), Lsh
forest: self-tuning indexes for similarity search, in
‘Proceedings of the 14th international conference
on World Wide Web’, ACM, pp. 651–660.

Baxter, R., Christen, P. & Churches, T. (2003), ‘A
comparison of fast blocking methods for record
linkage’, ACM SIGKDD Workshop on Data Clean-
ing, Record Linkage and Object Consolidation,
pages 2527, Washington DC .

Broder, A. Z. (1997), On the resemblance and con-
tainment of documents, in ‘Compression and Com-
plexity of Sequences 1997. Proceedings’, IEEE,
pp. 21–29.

Christen, P. (2012), ‘A survey of indexing tech-
niques for scalable record linkage and dedupli-
cation’, Knowledge and Data Engineering, IEEE
Transactions on 24(9), 1537–1555.

Christen, P. & Gayler, R. (2008), ‘Towards scalable
real-time entity resolution using a similarity-aware
inverted index approach’, AusDM ’08 Proceedings
of the 7th Australasian Data Mining Conference .

Christen, P., Gayler, R. & Hawking, D. (2009),
Similarity-aware indexing for real-time entity res-
olution, in ‘Proceedings of the 18th ACM confer-
ence on Information and knowledge management’,
ACM, pp. 1565–1568.

Das Sarma, A., Jain, A., Machanavajjhala, A. & Bo-
hannon, P. (2012), An automatic blocking mecha-
nism for large-scale de-duplication tasks, in ‘Pro-
ceedings of the 21st ACM international confer-
ence on Information and knowledge management’,
ACM, pp. 1055–1064.

Dasgupta, A., Kumar, R. & Sarlós, T. (2011),
Fast locality-sensitive hashing, in ‘Proceedings of
the 17th ACM SIGKDD international conference
on Knowledge discovery and data mining’, ACM,
pp. 1073–1081.

Dong, W., Wang, Z., Josephson, W., Charikar, M.
& Li, K. (2008), Modeling lsh for performance tun-
ing, in ‘Proceedings of the 17th ACM conference on
Information and knowledge management’, ACM,
pp. 669–678.

Elmagarmid, A. K., Ipeirotis, P. G. & Verykios, V. S.
(2007), ‘Duplicate record detection: A survey’,
Knowledge and Data Engineering, IEEE Transac-
tions on 19(1), 1–16.

Gan, J., Feng, J., Fang, Q. & Ng, W. (2012), Locality-
sensitive hashing scheme based on dynamic colli-
sion counting, in ‘Proceedings of the 2012 ACM
SIGMOD International Conference on Manage-
ment of Data’, ACM, pp. 541–552.

Gionis, A., Indyk, P., Motwani, R. et al. (1999), Sim-
ilarity search in high dimensions via hashing, in
‘VLDB’, Vol. 99, pp. 518–529.

Hernandez, M. A. & Stolfo, S. J. (1995), ‘The
merge/purge problem for large databases’, ACM
SIGMOD95, San Jose .

Ioffe, S. (2010), Improved consistent sampling,
weighted minhash and l1 sketching, in ‘Data Min-
ing (ICDM), 2010 IEEE 10th International Confer-
ence on’, IEEE, pp. 246–255.

Kim, H.-s. & Lee, D. (2010), Harra: fast iterative
hashed record linkage for large-scale data collec-
tions, in ‘Proceedings of the 13th International
Conference on Extending Database Technology’,
ACM, pp. 525–536.

Lange, D. & Naumann, F. (2011), Efficient similar-
ity search: arbitrary similarity measures, arbitrary
composition, in ‘Proceedings of the 20th ACM in-
ternational conference on Information and knowl-
edge management’, ACM, pp. 1679–1688.

Lange, D. & Naumann, F. (2012), ‘Cost-aware query
planning for similarity search’, Information Sys-
tems .

Li, L., Wang, D., Li, T., Knox, D. & Padmanab-
han, B. (2011), Scene: a scalable two-stage person-
alized news recommendation system., in ‘SIGIR’,
pp. 125–134.

Lv, Q., Josephson, W., Wang, Z., Charikar, M. & Li,
K. (2007), Multi-probe lsh: efficient indexing for
high-dimensional similarity search, in ‘Proceedings
of the 33rd international conference on Very large
data bases’, VLDB Endowment, pp. 950–961.

Michelson, M. & Knoblock, C. A. (2006), Learning
blocking schemes for record linkage, in ‘Proceed-
ings of the National Conference on Artifiical Intel-
ligence’, Vol. 21, Menlo Park, CA; Cambridge, MA;
London; AAAI Press; MIT Press; 1999, p. 440.

North Carolina State Board of Elections: NC voter
registration database (Last accessed 11 December
2012).
URL: ftp://www.app.sboe.state.nc.us/

Ramadan, B., Christen, P., Liang, H., Gayler, R. W.
& Hawking, D. (2013), Dynamic similarity-aware
inverted indexing for real-time entity resolution, in
‘Trends and Applications in Knowledge Discovery
and Data Mining’, Springer, pp. 47–58.

Slaney, M. & Casey, M. (2008), ‘Locality-
sensitive hashing for finding nearest neighbors [lec-
ture notes]’, Signal Processing Magazine, IEEE
25(2), 128–131.

Sood, S. & Loguinov, D. (2011), Probabilistic near-
duplicate detection using simhash, in ‘Proceed-
ings of the 20th ACM international conference on
Information and knowledge management’, ACM,
pp. 1117–1126.

Yan, S., Lee, D., Kan, M. Y. & Giles, L. C. (2007),
‘Adaptive sorted neigh-borhood methods for effi-
cient record linkage’, ACM/IEEE-CS joint confer-
ence on Digital Libraries .

